47 research outputs found

    Predictive models for starting antiseizure medication withdrawal following epilepsy surgery in adults

    Full text link
    More than half of adults with epilepsy undergoing resective epilepsy surgery achieve long-term seizure freedom and might consider withdrawing antiseizure medications (ASMs). We aimed to identify predictors of seizure recurrence after starting postoperative ASM withdrawal and develop and validate predictive models. We performed an international multicentre observational cohort study in nine tertiary epilepsy referral centres. We included 850 adults who started ASM withdrawal following resective epilepsy surgery and were free of seizures other than focal non-motor aware seizures before starting ASM withdrawal. We developed a model predicting recurrent seizures, other than focal non-motor aware seizures, using Cox proportional hazards regression in a derivation cohort (n = 231). Independent predictors of seizure recurrence, other than focal non-motor aware seizures, following the start of ASM withdrawal were focal non motor-aware seizures after surgery and before withdrawal (adjusted hazards ratio [aHR] 5.5, 95% confidence interval [CI] 2.7-11.1), history of focal to bilateral tonic-clonic seizures before surgery (aHR 1.6, 95% CI 0.9-2.8), time from surgery to the start of ASM withdrawal (aHR 0.9, 95% CI 0.8-0.9), and number of ASMs at time of surgery (aHR 1.2, 95% CI 0.9-1.6). Model discrimination showed a concordance statistic of 0.67 (95% CI 0.63-0.71) in the external validation cohorts (n = 500). A secondary model predicting recurrence of any seizures (including focal non-motor aware seizures) was developed and validated in a subgroup that did not have focal non-motor aware seizures before withdrawal (n = 639), showing a concordance statistic of 0.68 (95% CI 0.64-0.72). Calibration plots indicated high agreement of predicted and observed outcomes for both models. We show that simple algorithms, available as graphical nomograms and online tools (predictepilepsy.github.io), can provide probabilities of seizure outcomes after starting postoperative ASMs withdrawal. These multicentre-validated models may assist clinicians when discussing ASM withdrawal after surgery with their patients

    Identifying epileptogenic abnormality by decomposing intracranial EEG and MEG power spectra

    Full text link
    Identifying abnormal electroencephalographic activity is crucial in diagnosis and treatment of epilepsy. Recent studies showed that decomposing brain activity into periodic (oscillatory) and aperiodic (trend across all frequencies) components may illuminate drivers of changes in spectral activity. Using iEEG data from 234 subjects, we constructed a normative map and compared this with a separate cohort of 63 patients with refractory focal epilepsy being considered for neurosurgery. The normative map was computed using three approaches: (i) relative complete band power, (ii) relative band power with the aperiodic component removed (iii) the aperiodic exponent. Corresponding abnormalities were also calculated for each approach in the separate patient cohort. We investigated the spatial profiles of the three approaches, assessed their localizing ability, and replicated our findings in a separate modality using MEG. The normative maps of relative complete band power and relative periodic band power had similar spatial profiles. In the aperiodic normative map, exponent values were highest in the temporal lobe. Abnormality estimated through the complete band power robustly distinguished between good and bad outcome patients. Neither periodic band power nor aperiodic exponent abnormalities distinguished seizure outcome groups. Combining periodic and aperiodic abnormalities improved performance, similar to the complete band power approach. Our findings suggest that sparing cerebral tissue that generates abnormalities in either periodic or aperiodic activity may lead to a poor surgical outcome. Both periodic and aperiodic abnormalities are necessary to distinguish patient outcomes, with neither sufficient in isolation. Future studies could investigate whether periodic or aperiodic abnormalities are affected by the cerebral location or pathology

    Volumetric analysis of the piriform cortex in temporal lobe epilepsy

    Full text link
    The piriform cortex, at the confluence of the temporal and frontal lobes, generates seizures in response to chemical convulsants and electrical stimulation. Resection of more than 50% of the piriform cortex in anterior temporal lobe resection for refractory temporal lobe epilepsy (TLE) was associated with a 16-fold higher chance of seizure freedom. The objectives of the current study were to implement a robust protocol to measure piriform cortex volumes and to quantify the correlation of these volumes with clinical characteristics of TLE. Sixty individuals with unilateral TLE (33 left) and 20 healthy controls had volumetric analysis of left and right piriform cortex and hippocampi. A protocol for segmenting and measuring the volumes of the piriform cortices was implemented, with good inter-rater and test-retest reliability. The right piriform cortex volume was consistently larger than the left piriform cortex in both healthy controls and patients with TLE. In controls, the mean volume of the right piriform cortex was 17.7% larger than the left, and the right piriform cortex extended a mean of 6 mm (Range: -4 to 12) more anteriorly than the left. This asymmetry was also seen in left and right TLE. In TLE patients overall, the piriform cortices were not significantly smaller than in controls. Hippocampal sclerosis was associated with decreased ipsilateral and contralateral piriform cortex volumes. The piriform cortex volumes, both ipsilateral and contralateral to the epileptic temporal lobe, were smaller with a longer duration of epilepsy. There was no significant association between piriform cortex volumes and the frequency of focal seizures with impaired awareness or the number of anti-seizure medications taken. Implementation of robust segmentation will enable consistent neurosurgical resection in anterior temporal lobe surgery for refractory TLE.

    Normative brain mapping using scalp EEG and potential clinical application

    Get PDF
    A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed scalp EEG normative maps of brain dynamics from 17 healthy controls using source-localised resting-state scalp recordings. We then correlated these maps with those acquired from MEG and intracranial EEG to investigate their similarity. Lastly, we use the normative maps to lateralise abnormal regions in epilepsy. Spatial patterns of band powers were broadly consistent with previous literature and stable across recordings. Scalp EEG normative maps were most similar to other modalities in the alpha band, and relatively similar across most bands. Towards a clinical application in epilepsy, we found abnormal temporal regions ipsilateral to the epileptogenic hemisphere. Scalp EEG relative band power normative maps are spatially stable across time, in keeping with MEG and intracranial EEG results. Normative mapping is feasible and may be potentially clinically useful in epilepsy. Future studies with larger sample sizes and high-density EEG are now required for validation

    Effects of anterior temporal lobe resection on cortical morphology

    Get PDF
    Anterior temporal lobe resection (ATLR) is a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Resection may involve large amounts of cortical tissue. Here, we examine the effects of this surgery on cortical morphology measured in independent variables both near the resection and remotely. We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2 to 13 months after surgery. We used our newly developed surface-based method to locally compute traditional morphological variables (average cortical thickness, exposed surface area, and total surface area), and the independent measures KK, II, and SS, where KK measures white matter tension, II captures isometric scaling, and SS contains the remaining information about cortical shape. Data from 924 healthy controls was included to account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR. Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole. The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures

    Volumetric and structural connectivity abnormalities co-localise in TLE

    Get PDF
    Patients with temporal lobe epilepsy (TLE) exhibit both volumetric and structural connectivity abnormalities relative to healthy controls. How these abnormalities inter-relate and their mechanisms are unclear. We computed grey matter volumetric changes and white matter structural connectivity abnormalities in 144 patients with unilateral TLE and 96 healthy controls. Regional volumes were calculated using T1-weighted MRI, while structural connectivity was derived using white matter fibre tractography from diffusion-weighted MRI. For each regional volume and each connection strength, we calculated the effect size between patient and control groups in a group-level analysis. We then applied hierarchical regression to investigate the relationship between volumetric and structural connectivity abnormalities in individuals. Additionally, we quantified whether abnormalities co-localised within individual patients by computing Dice similarity scores. In TLE, white matter connectivity abnormalities were greater when joining two grey matter regions with abnormal volumes. Similarly, grey matter volumetric abnormalities were greater when joined by abnormal white matter connections. The extent of volumetric and connectivity abnormalities related to epilepsy duration, but co-localisation did not. Co-localisation was primarily driven by neighbouring abnormalities in the ipsilateral hemisphere. Overall, volumetric and structural connectivity abnormalities were related in TLE. Our results suggest that shared mechanisms may underlie changes in both volume and connectivity alterations in patients with TLE

    Resective surgery prevents progressive cortical thinning in temporal lobe epilepsy

    Full text link
    Focal epilepsy in adults is associated with progressive atrophy of the cortex at a rate more than double that of normal ageing. We aimed to determine whether successful epilepsy surgery interrupts progressive cortical thinning. In this longitudinal case-control neuroimaging study, we included subjects with unilateral temporal lobe epilepsy (TLE) before (n = 29) or after (n = 56) anterior temporal lobe resection and healthy volunteers (n = 124) comparable regarding age and sex. We measured cortical thickness on paired structural MRI scans in all participants and compared progressive thinning between groups using linear mixed effects models. Compared to ageing-related cortical thinning in healthy subjects, we found progressive cortical atrophy on vertex-wise analysis in TLE before surgery that was bilateral and localized beyond the ipsilateral temporal lobe. In these regions, we observed accelerated annualized thinning in left (left TLE 0.0192 ± 0.0014 versus healthy volunteers 0.0032 ± 0.0013 mm/year, P < 0.0001) and right (right TLE 0.0198 ± 0.0016 versus healthy volunteers 0.0037 ± 0.0016 mm/year, P < 0.0001) presurgical TLE cases. Cortical thinning in these areas was reduced after surgical resection of the left (0.0074 ± 0.0016 mm/year, P = 0.0006) or right (0.0052 ± 0.0020 mm/year, P = 0.0006) anterior temporal lobe. Directly comparing the post- versus presurgical TLE groups on vertex-wise analysis, the areas of postoperatively reduced thinning were in both hemispheres, particularly, but not exclusively, in regions that were affected preoperatively. Participants who remained completely seizure-free after surgery had no more progressive thinning than that observed during normal ageing. Those with postoperative seizures had small areas of continued accelerated thinning after surgery. Thus, successful epilepsy surgery prevents progressive cortical atrophy that is observed in TLE and may be potentially neuroprotective. This effect was more pronounced in those who remained seizure-free after temporal lobe resection, normalizing the rate of atrophy to that of normal ageing. These results provide evidence of epilepsy surgery preventing further cerebral damage and provide incentives for offering early surgery in refractory TLE

    Identifying epileptogenic abnormalities through spatial clustering of MEG interictal band power

    Full text link
    Successful epilepsy surgery depends on localising and resecting cerebral abnormalities and networks that generate seizures. Abnormalities, however, may be widely distributed across multiple discontiguous areas. We propose spatially constrained clusters as candidate areas for further investigation, and potential resection. We quantified the spatial overlap between the abnormality cluster and subsequent resection, hypothesising a greater overlap in seizure-free patients. Thirty-four individuals with refractory focal epilepsy underwent pre-surgical resting-state interictal MEG recording. Fourteen individuals were totally seizure free (ILAE 1) after surgery and 20 continued to have some seizures post-operatively (ILAE 2+). Band power abnormality maps were derived using controls as a baseline. Patient abnormalities were spatially clustered using the k-means algorithm. The tissue within the cluster containing the most abnormal region was compared with the resection volume using the dice score. The proposed abnormality cluster overlapped with the resection in 71% of ILAE 1 patients. Conversely, an overlap only occurred in 15% of ILAE 2+ patients. This effect discriminated outcome groups well (AUC=0.82). Our novel approach identifies clusters of spatially similar tissue with high abnormality. This is clinically valuable, providing (i) a data-driven framework to validate current hypotheses of the epileptogenic zone localisation or (ii) to guide further investigation.Comment: 16 pages, 3 figure

    Identifying epileptogenic abnormalities through spatial clustering of MEG interictal band power

    Get PDF
    Successful epilepsy surgery depends on localising and resecting cerebral abnormalities and networks that generate seizures. Abnormalities, however, may be widely distributed across multiple discontiguous areas. We propose spatially constrained clusters as candidate areas for further investigation, and potential resection. We quantified the spatial overlap between the abnormality cluster and subsequent resection, hypothesising a greater overlap in seizure-free patients. Thirty-four individuals with refractory focal epilepsy underwent pre-surgical resting-state interictal MEG recording. Fourteen individuals were totally seizure free (ILAE 1) after surgery and 20 continued to have some seizures post-operatively (ILAE 2+). Band power abnormality maps were derived using controls as a baseline. Patient abnormalities were spatially clustered using the k-means algorithm. The tissue within the cluster containing the most abnormal region was compared with the resection volume using the dice score. The proposed abnormality cluster overlapped with the resection in 71% of ILAE 1 patients. Conversely, an overlap only occurred in 15% of ILAE 2+ patients. This effect discriminated outcome groups well (AUC=0.82). Our novel approach identifies clusters of spatially similar tissue with high abnormality. This is clinically valuable, providing (i) a data-driven framework to validate current hypotheses of the epileptogenic zone localisation or (ii) to guide further investigation
    corecore